Packet Tracer - 配置单臂路由器 VLAN 间路由

拓扑

地址分配表

设备	接口	IPv4 地址	子网掩码	默认网关
R1	G0/0.10	172.17.10.1	255.255.255.0	不适用
	G0/0.30	172.17.30.1	255.255.255.0	不适用
PC1	NIC	172.17.10.10	255.255.255.0	172.17.10.1
PC2	NIC	172.17.30.10	255.255.255.0	172.17.30.1

目标

第1部分:测试不使用 VLAN 间路由时的连接

第2部分:为交换机添加 VLAN

第3部分:配置子接口

第4部分:测试使用 VLAN 间路由时的连接

场景

在本练习中,您将在实施 VLAN 间路由之前先检查连接。然后,配置 VLAN 和 VLAN 间路由。最后,您将启用 中继,并验证 VLAN 之间的连接。

第1部分:测试不使用 VLAN 间路由时的连接

步骤 1: 在 PC1 和 PC3 之间执行 Ping 操作。

等待交换机融合,或点击几次**加快转发时间**。当 PC1 和 PC3 的链路灯亮绿光时,在 PC1 和 PC3 之间执行 ping 操作。由于两台 PC 位于不同的网络上,而且 R1 未配置,因此 ping 操作失败。

步骤 2: 切换到模拟模式以监视 ping。

- a. 通过点击模拟选项卡或按 Shift+S 切换到模拟模式。
- b. 点击**捕获/转发**以查看 ping 在 PC1 和 PC3 之间采取的步骤。注意 ping 怎么会从不离开 PC1。哪个过程失败,原因是什么?

第2部分:为交换机添加 VLAN

步骤 1: 在 S1 上创建 VLAN。

返回到实时模式,并在 S1 上创建 VLAN 10 和 VLAN 30。

步骤 2: 为端口指定 VLAN。

- a 将接口 F0/6 和 F0/11 配置为接入点并分配 VLAN。
 - 将 PC1 分配到 VLAN 10。
 - 将 PC3 分配到 VLAN 30。

b 发出 show vlan brief 命令以验证 VLAN 配置。

S1# show vlan brief

VLAN Name	Status	Ports
1 default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4
		Fa0/5, Fa0/7, Fa0/8,Fa0/9
		Fa0/10, Fa0/12, Fa0/13,Fa0/14
		Fa0/15, Fa0/16, Fa0/17, Fa0/18
		Fa0/19, Fa0/20, Fa0/21, Fa0/22
		Fa0/23, Fa0/24, Gig0/1, Gig0/2
10 VLAN0010	active	Fa0/11
30 VLAN0030	active	Fa0/6
1002 fddi-default	active	
1003 token-ring-default	active	
1004 fddinet-default	active	
1005 trnet-default	active	

步骤 3: 测试 PC1 和 PC3 之间的连接。

从 PC1 ping PC3。Ping 仍然会失败。为什么 ping 不成功?

第3部分:配置子接口

步骤 1: 使用 802.1Q 封装在 R1 上配置子接口。

- a 配置子接口 G0/0.10。
 - 将封装类型设置为 802.1Q,将 VLAN 10 分配到子接口。
 - 参见地址表,为子接口分配正确的 IP 地址。
- b 为 G0/0.30 子接口重复此操作。

步骤 2: 验证配置。

- a 使用 show ip interface brief 命令验证子接口配置。两个子接口都关闭。子接口是与物理接口关联的虚拟 接口。因此,为了启用子接口,您必须启用与它们关联的物理接口。
- b 启用 G0/0 接口。验证子接口现在是否处于活动状态。

第4部分:测试使用 VLAN 间路由时的连接

步骤 1: 在 PC1 和 PC3 之间执行 Ping 操作。

从 PC1 ping PC3。Ping 仍然会失败。

步骤 2: 启用中继。

- a 在 **S1**上,发出 show vlan 命令。G0/1 分配到哪个 VLAN?
- b 由于路由器配置了已分配到不同 VLAN 的多个子接口,连接到路由器的交换机端口必须配置为中继。在接口 G0/1 上启用中继。
- c 如何使用 show vlan 命令来确定接口为中继端口?
- d 发出 show interface trunk 命令以验证接口是否配置为中继。

步骤 3: 切换到模拟模式以监视 ping。

- a 通过点击模拟选项卡或按 Shift+S 切换到模拟模式。
- b 点击捕获/转发以查看 ping 在 PC1 和 PC3 之间采取的步骤。
- c 您应该会看到 S1 和 R1 之间的 ARP 请求和答复。然后是 R1 和 S3 之间的 ARP 请求和答复。然后, PC1 可以为 ICMP 回应请求封装正确的数据链路层信息, R1 会将请求路由到 PC3。
 - 注: ARP 流程完成后,您可能需要点击"重设模拟"以查看 ICMP 流程是否完成。

推荐评分规则

Packet Tracer 评分为 60 分。四题每题 10 分。